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THERMAL DISTORTIONS OF THIN-WALLED PARABOLOIDAL SHELLS* 

By Joseph E. Walz 
Langley Research Center 

SUMMARY 

Equations a r e  presented to describe the linear behavior of a deep thin-walled shell 
of revolution subjected to an axisymmetric thermal loading. A solution is obtained for  a 
paraboloid with a ring at the edge. Results are plotted showing the rotation of the tangent 
to the shell due to (1) constant temperature difference between shell and ring and (2) con- 
stant temperature gradient through the thickness of the shell. 

INTRODUCTION 

The radiation of the sun provides an attractive source of power for  satellites and 
space vehicles. To transform the radiation of the sun into electrical power, a conversion 
system is required. In order to  obtain usable amounts of electrical power, some con- 
version systems require concentration of the rays  of the sun; thus, the concept of a solar 
concentrator has been developed. Several shapes of concentrators a r e  conceivable, but 
most of the attention has been devoted to the paraboloidal shape because of its high con- 
centrating ability. 
question a r i s e s  as to the effect that temperature gradients have on the shape of the shell 
forming this mirror  and consequently on its concentrating ability. 

In the utilization of a paraboloidal mir ror  as a solar concentrator, the 

In order to obtain maximum efficiency, efforts will  be made to train the axis of the 
paraboloidal mir ror  directly at the center of the sun; hence, axisymmetric temperature 
effects may be encountered. In preliminary studies (such as ref. 1) where the use of 
linear plate formulas have been employed, temperature gradients through the thickness 
of the paraboloid were shown to produce large overall distortions. Reference 2 develops 
a means of solving the general axisymmetric thermal problem for  an isotropic shell of 
revolution which is based on deep shell theory; unfortunately, the numerical results in the 
illustrative example section appear to be in e r ror .  

~ 

* The information presented herein is based in part upon a thesis submitted in 
partial fulfillment of the requirements for  the degree of Master of Science in Engineering 
Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, June 1965. 
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In the present paper equations governing the linear behavior of a general isotropic 
shell of revolution subjected to an axisymmetric temperature distribution are given. 
Deep shell theory, although different from that used in reference 2, is employed to obtain 
these equations. These equations are specialized fo r  a paraboloid with a ring a t  the edge 
subjected to a constant overall temperature change and a constant temperature gradient 
through the thickness; the ring may have a uniform temperature change which is different 
from that of the shell. The ability of the ring to res t r ic t  the expansion and rotation of the 
edge of the shell can be varied by adjusting the stiffness parameters involved. Results 
are presented in equation form for stresses and displacements, and figures showing 
rotation of the tangent at any location a r e  plotted for  a wide range of parameters. An 
indication is given as to  the effect that thermal distortions have on the concentrating 
ability of a paraboloid used as a solar concentrator. 

SYMBOLS 

The units used for  the physical quantities defined in this paper a re  given both in 
U.S. Customary Units and in the International System of Units (SI). (See ref. 3.) 

Ar cross-sectional area of ring 

a radius from axis to centroid of ring (see fig. 3) 

b cross-sectional radius of circular ring (see fig. 3) 

C extensional stiffness of shell, Eh 

ErAr  dimensionless ratio of extensional stiffness of ring to that of shell, - 
Ehr, 

concentration ratio herein used as ratio of projected a rea  of concentrator to 

- 
C 

CA 
area  of aperture of an absorber located in focal plane 

Eh3 D flexural stiffness of shell, 
12(1 - v2) 

E r  Ir dimensionless ratio of flexural stiffness of ring to that of shell, - 
r 0 D  

- 
D 

E Young's modulus of shell 

E r  Young's modulus of ring 
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f 

H 

h 

Ir 

P 

radial eccentricity of centroid of ring from point of attachment of ring to 
shell (see fig. 3) 

axial eccentricity of centroid of ring from point of attachment of ring to  
shell (see fig. 3) 

dX elliptic integral of first kind, lox 11 - k 2 sin2X 

2 
focal length of paraboloid, - r0 

420 

radial s t r e s s  resultant 

thickness of shell 

moment of inertia of c ross  section of ring about centroidal axis in plane 
of ring 

integers 

constant s 

modulus of elliptic integral 

distance in focal plane that a reflected ray misses focal point 

radius of aperture of absorber 

bending moments per  unit length of sections of shell (see fig. 1) 

applied uniform moment per unit length 

normal s t r e s s  resultants in meridional and circumferential directions, 
respectively (see fig. 1) 

applied uniform force per unit length 
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radially distributed loading, positive in cr-direction ph 

PV axially distributed loading, positive in +z-direction 

Q transverse shear stress resultant 

r radial distance to point on meridian of shell 

r0 radial distance to edge of shell 

T temperature change from stress-free datum 

Tinner temperature change from datum of point on inner surface of shell 

Touter temperature change from datum of point on outer surface of shell 

T r  uniform temperature change of ring from datum 

Touter + Tinner T s  = 
2 

U radial displacement of shell 

- 
U nondimensional radial displacement of shell 

U a  total radial displacement uf attachment point of ring 

uacl,uac2 radial displacements of point of attachment relative to centroid of ring 

uc1,uc2 radial displacements of centroid of ring 

V axial s t r e s s  resultant 

W axial displacement 

- 
W nondimensional axial displacement 
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axial distance to point on meridian of shell 

axial distance to edge of shell 

Lam6 parameter defined by equation (13a); specialized for  paraboloid by 
equation (38) 

coefficient of linear thermal expansion of ring material 

coefficient of linear thermal expansion of shell material 

rotation of tangent of point on middle surface of shell from undeformed 
position to  deformed position (see fig. 1) 

r im angle 

Kronecker delta (6ij = 0, if 

s train in meridional and circumferential directions, respectively, at any 

i # j;  6ij = 1, if i = j) 

point in shell 

strain in meridional and circumferential directions, respectively, at points 
on middle surface of shell 

coordinate along inward normal of shell (see fig. 1) 

expression defined by equation (41); specialized fo r  paraboloid by 
equation (42) 

circumferential coordinate 

curvature changes in meridional and circumferential directions, respectively 
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($ parameter indicating amount of concavity of paraboloid, 

Poisson's ra t io  of shell material 

r dimensionless coordinate specifying point on meridian, - 
r0 

expression defined in equations (28); specialized for paraboloid by 
equation (39) 

normal stress in meridional and circumferential directions, respectively 

expression defined in equations (28); specialized for paraboloid by 
equation (40) 

angle that tangent to a point on undeformed middle surface of shell makes 
with plane perpendicular to axis of shell (see fig. 1) 

amplitude of elliptic integral 

Subscript: 

0 evaluated at < = 1 

Pr imes  denote derivatives with respect to 5 .  

LINEAR AXISYMMETFUC SHELL EQUATIONS 

The governing equations for  a linear thermoelastic axisymmetric problem involving 
a shell of revolution are obtained by modifying the equations in reference 4 to  include 
temperature effects. The positive directions of the stress resultants and couples, dis- 
placements, and rotation involved in the development of these equations a r e  shown in 
figure 1. 

St r e  ss- Strain Relations 

When transverse normal s t r e s s  is neglected, the following s t r e s s  strain relations 
hold as long as E, as, and v are taken to be constant over the range of temperatures 
being considered: 
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The assumption is made that the temperature is linear through the thickness of the shell; 
thus 

( 3) T = T s + - A T  P 
h 

where 

Ts = '(T inner + Touter) (4) 

The following strain variations through the thickness are used (ref. 4) when attention is 
restricted to  thin shells (that is, ratio of shell thickness to radius of curvature is small 
compared with one): 

In obtaining the relationships expressed in equations (6), the deformations due to  trans- 
verse  shear and transverse normal s t r e s s  are neglected; thus, points on the normal to  
the undeformed surface lie on the normal to  the deformed surface. 
and couples are defined as 

The stress resultants 
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Substitutions from equations ( l ) ,  (2), (3), and (6) into equations (7), after performing the 
required integrations, yield 

where 

C = E h  1 
12(1 - v2) 

Eh3 i D =  

E qui1 ibr ium and Compatibility E quat ions 

Equilibrium of forces  in the axial and radial directions is found in reference 4 
to be (H is the radial force resultant; V is the axial force resultant (see fig. 1)) i 

and the moment equilibrium equation is 

( r M 0  - 
COS cp + rE(H sin cp - V cos cp) = 0 (12) 

where a prime denotes differentiation with respect to 5 ,  and 

- a =  E r') 2 + (z') j1'2 

Z'  

r' 
t a n c p = -  
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A compatibility relation is given which for  small rotations /3 is 

Strain Displacement Relations 

Strain displacement equations given in reference 4 are 

and for  small rotations 

where u and w are radial and axial displacements, respectively. Thus, substitution 
of s t ra ins  from equations (8) into equations (15) and (16) yields 

w = ~ ( N S  - VNe) - r'pld'$ + z'aSTS dt; 

The curvature changes are given as 

and for  small rotation 

Development of Governing Second-Order Differential Equations 

The complete system of field equations can be reduced to  two ordinary second- 
order differential equations in two unknowns. To develop these equations, it is desirable, 
initially, to  express all quantities in t e rms  of H, V, p, and the distributed and thermal 
loads. 
are related to  the axial and radial stress resultants by the following equations: 

The normal s t r e s s  resultant N5 and the transverse shear s t r e s s  resultant Q 
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N5 = H cos cp + V sin SQ 

Q = -H sin cp + V cos cp 

Once pv is established, the solution for  V from equation (10) is 

Substitution of the moment expressions in equations (8) into the moment equilibrium 
equation (12) after f i r s t  using the curvature changes given in equations (19) and (20) yields 
a second-order differential equation involving p and rH. The other differential equa- 
tion required is obtained by substitution of and T f rom equations (8), with Ne  
and N5 f rom equations (11) and (21), into the compatibility equation (14). By use of the 
following transformation , 

- 
5 

Y = -(rH) /z 
the two differential equations so derived become 

where 

I 

J 

(28) 
Equation continued on next page 
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[R]'+: 
2 (21 

+ =  ($) + 2 (&) 
+ -  + @I (&) 

and I Iref means the absolute value of a quantity evaluated at a suitably chosen refer- 

ence point on the shell. 

Approximate Solution to Governing Equations 

It is convenient to consider separately the homogeneous and particular solutions of 
the equations. In equations (26) and (27) the quantity p2 is, in general, of the order of 
the ratio of a radius of curvature to the thickness of the shell and is large compared with 
unity. The functions 0 and + appearing in these equations are, in general, of the 
order of unity provided the shell is such that the thickness is slowly varying (it may not 
vary appreciably over a distance on the order of p h ,  where h is the average thickness 
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and R is a representative radius of curvature) and provided the functions a r e  not eval- 
uated in a shallow region of the shell. Under these circumstances, for  an approximate 
solution to the homogeneous parts of equations (26) and (27), it would be permissible to  
omit the 0 and the @ t e rms  and put the equations in the following form: 

where the subscript H re fers  to the homogeneous part. Reference 4 seeks to obtain 
an asymptotic solution to equation (29) by considering the following ser ies :  

As in reference 4 the solution of equation (29), except for  small t e rms  of order l/p, is 
obtained by retaining only the leading te rms  in the ser ies  in equations (30) and (31) to 
yield 

where C1 and C2 are complex constants, - '' is taken to be 1, and 1 is 

*(l + i)J+ d t .  The case where - = -1 requires changing i to -i in the expo- 

nents in equation (32). 

I z' I 
Z' 

I Z ' I  

In the treatment of approximate particular solutions, it is to be observed that the 
right-hand sides of equations (26) and (27) consist of applied pressure loading te rms  and 
thermal loading terms.  With the stipulation that the derivative of the pressure loading 
with respect to  5 is not of order of magnitude greater than the loading itself, conven- 
tional membrane theory has been shown to provide an adequate approximate particular 
solution consistent with retaining only the leading t e rms  in the homogeneous solution 
(ref. 5). 
under a similar condition, the f i r s t  two t e rms  on the left-hand sides of equations (27) and 
(26) would be neglected, and, as a result, 

To obtain a particular solution (denoted by subscript P) for the thermal loading 
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which correspond to  those obtained in reference 6 for  constant thickness. As f a r  as 
stresses a r e  concerned, the retention of these particular solutions appears to be incon- 
sistent with retaining only the leading t e rms  in the homogeneous solution and s t resses  
obtained in this manner are in question; however, meaningful values for  the rotation of 
the tangent may be obtained away from the edge of the shell. 

Separation of equation (32) into rea l  and imaginary par ts  and the addition of the 
particular solutions yields the complete solution for  X and Y. Thus, the deformations 
may be evaluated once the geometry is specified. 

PARABOLOIDAL SHELL WITH EDGE RING 

The general equations developed in the preceding sections a r e  now specialized to  a 
paraboloid of revolution of constant thickness with a ring at the edge. 
there is no loading other than a thermal loading due to temperature changes, Ts of the 
shell and Tr  of the ring, and constant temperature gradient through the thickness of 
the shell AT. The presence of a ring is considered because a paraboloid used as a 
solar concentrator may have a support ring attached at its edge, but other boundary con- 
ditions such as a f ree  or clamped edge may be realized by suitably adjusting two stiffness 
parameters of the ring. 

In particular, 

The dimensionless coordinate .$ is used to specify a point on the meridian where 

and r is the radial distance from the axis to the particular point on the meridian and 
ro is the radial distance to the edge. In this coordinate system a paraboloid is specified 
bY 

where z is the axial location of a point, f is the focal length of the paraboloid, and 
2 

X = rg) . The r im  angle y and X have the relationship expressed by the following 

equation, and a plot of this relationship is shown in figure 2: 
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2x1I2 tan y = - 
1 - h  (37) 

The r im angle y is the angle formed between the axis of the paraboloid and a line 
passing through a point on the r im and the focus (fig. 2). 

The Lam6 parameter, given by equation (13a), for a paraboloid in this coordinate 
system be comes 

and the f i r s t  two quantities of equations (28) become 

P =  

when the apex is selected as the reference point. 

I l = p I ,  5 

in this coordinate system, becomes 

Another quantity q defined as 

d5 

is an elliptic integral of the f i rs t  kind and X dX where F(k,x) = 

(39) 

(4 3) 

The particular solutions Xp and YP, as given by equations (33) and (34) a r e  both 
zero, since no applied loading is considered besides thermal loading, the shell is of con- 
stant thickness, and the temperature components a r e  constant. Thus, the homogeneous 
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solutions of equations (26) and (27) a r e  the complete solutions. For the case of a parab- 
oloid which is closed at  the apex, C2 is equal to zero (ref. 7) and the following solution 
is obtained: 

X =  

Y =  

where K1 and K2 a r e  

(44) 

(4 5) 

dimensionless constants obtained by nondimensionalizing the 
real  and imaginary par ts  of Henceforth, as in equations (44) and (45), the sub- 
script  o indicates a quantity evaluated at the point 5 = 1. Equations (44) and (45), 
with the use of equations (24) and (25), permit the evaluation of s t resses  and deformations 
once the constants K1 and K2 have been evaluated from the boundary conditions. 

C1. 

Deflection and Rotation of Edge of Shell 

Boundary conditions for  a shell having a ring attached at  i ts  edge a r e  such that 
deformation and force compatibility must be maintained at  the attachment point of the ring 
and the shell. Thus the radial displacement u of the shell at the edge must be equal to 
the radial displacement of the ring at  the point of attachment. Also, if the method of 
attachment permits transfer of moment, the edge of the shell and the ring must rotate the 
same amount about an axis perpendicular to the c ross  section of the ring. 

For the shell, f rom equations (24) and (44), the rotation at  any point is 

and thus at the edge of the shell 

po = 2/3(1 - ~ 2 ) ( 1  + A)’l8(K1 cos qo - K2 sin qo) (4 7) 

where the subscript o denotes evaluation at 5 = 1. An approximate relation for  the 
u-displacement, based on the consideration that the solution of the governing equations 
neglects te rms  of order l /p  compared with 1, is found from equations (17), (ll), (25), 
and (45) to be 

1/2e-(q0-q)[Kl(sin q + cos q) + K~(COS q - sin q) + ro,g%Ts (48) 1 
15 
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A nondimensionalized radial displacement U is obtained by dividing equation (48) by h; 
thus, at the edge of the shell 

Eo = (1 + X)-ll8p sin qo + cos qo) + K2 (cos qo - sin qoi] + rO %Ts (4 9) 

Deflection and Rotation of Ring 

For a ring subjected to a uniform radial loading per  unit length P acting in the 
plane of the ring, there is no rotation; and the displacement 
loading is given by 

ucl in the direction of 

(See ref. 8.) 
tending to  twist the ring inside out, there is no displacement but a rotation in the direc- 
tion of the moment such that 

For a ring subjected to a uniform moment per  circumferential length m 

(See ref. 8.) If the ring has attained a uniform temperature increase Tr from initial 
equilibrium temperature, the centroid of the c ross  section of the ring has an additional 
displacement 

Since, in general, the ring is attached at some point other than i ts  centroid, addi- 
tional effects must be considered. Because the radial force does not act necessarily 
through the centroid, the moment created by this eccentricity must be included in equa- 
tion (51). Rotation of the ring produces a relative displacement between the centroid and 
the point of attachment. For small  positive angular rotation Pr, the radial displacement 
of the point of attachment relative to the centroid is 

where e, is positive when the point of attachment is 
figure 3. The displacement of the point of attachment 
is 

above the centroid as shown in 
relative to the centroid due to 

(53) 

Tr  
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where eh is positive when the centroid of the ring is at a distance greater than ro 
from the axis of the paraboloid. Thus, the total radial displacement U a  of the point of 
attachment is given by 

ua = u c ~  + uc2 + Uacl + Uac2 

Evaluation of Constants 

(55) 

In the process of evaluating the constants K1 and K2 L e r e  are three independ- 
ent temperature t e rms  to consider. It is possible, because of the linearity of the prob- 
lem, to consider each effect separately and then combine these effects to obtain the total 
effect. Thus, 

K2 = K21(asTs) + K22(@~ AT) + K23(arTr) (57) 

To insure compatibility of the shell-ring structure, the nondimensional radial dis- 
placement of the edge of the shell determined from equation (49) is set equal to the non- 
dimensional radial displacement of the point of attachment of the ring determined from 
the proper nondimensionalization of equation (55). Similarly, the rotation at the edge of 
the shell determined from equation (47) is set equal to the rotation of the ring determined 
from equation (51). From force compatibility considerations, the quantities P and m 
appearing in equations (50) and (51) a r e  

Pa = -Horo (58) 

m a = -  ( M to +Hoev)ro (59) 

(See fig. 3.) After the appropriate quantities from equations (8), (19), (25), (45), (46), 
(50), (52), (53), (54), (58), and (59) have been substituted into equations (55) and (51), the 
two aforementioned equalities result in two simultaneous equations which have the form 
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(6 1) 
- 

g21Klj + g22K2j = g2 j 

where the subscript j takes on the value 1, 2, or 3, depending on the temperature com- 
ponent of interest and 

cos qo - pF(1 + A)- ' l4(sin qo + cos q ro + eh gll = -( ro ) sin qo + c -- 

g12 = -( ro roeh) + cos qo - c - - sin qo - p ~ ( l +  A ) - ~ / ~ ( ~ ~ ~  qo - sin q, 
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Within the limits of the accuracy of the development and solution of equations (26) 
and (27), the deflections, s t r e s s  resultants, and couples become approximately 

62j 12(1 - v) 

as AT 
- K2j(sin q + COS q) 3 - 12(1 - v) 62j 

19 



where Sij, called Kronecker delta, is defined as 

and constants %j representing nondimensional rigid body translations are to  be deter- 

mined from the boundary condition on w. The total value of a quantity is therefore the 
sum of the components (for example, p = p1 + p2 + p3). 

RESULTS AND DISCUSSION 

Stresses and deformations throughout a paraboloid shell with a ring attached at  the 
edge can be calculated from equations (64) to (71). Because the rotation of the tangent p 
has the most significant effect on solar concentrator performance, results are presented 
for  the variation of p with radial distance for two types of temperature distributions 
and various values for  the structural and geometric parameters. The temperature dis- 
tributions represented a r e  (1) uniform temperature change of the shell and a possibly 
different temperature change of the ring from the datum temperature (consideration of 
+ -Tr  - asTs), and (2) uniform temperature gradient through the thickness of the shell 
with its middle surface and the ring at the datum temperature (consideration of as AT). 
Finally, results are presented of simplified efficiency calculations described in the 
appendix to  give some idea of the influence of these thermal loadings on the performance 
of a solar concentrator. 

Effect of Temperature Difference Between Shell and Ring 

The rotation of the tangent to the shell p as a function of radial distance r/ro is 
shown in figures 4 to 9 for  temperature distribution a r T r  - asTs. All results a r e  fo r  
h = 1/3 (except fig. 7),  ro/h = 5000 (except fig. 8), and no ring eccentricities (except 
fig. 9). In figures 4 to 9 for  the case of the same material in the ring and the shell and 
the same uniform temperature change in the ring and the shell, no rotations occur any- 
where. It must be borne in mind that the slope changes presented in this set  of figures 
a r e  those of a materia1 point of the shell and are not necessarily those of a spatial coor- 
dinate. In temperature distribution a r T r  - asTs the Ts component causes the shell 
to experience an expansion, and at a spatial coordinate there is a slope change because 
one material point is replaced by another material point which has a different slope than 
the original point. In this instance most of the paraboloid has expanded to the shape of a 
new paraboloid which has its focal length 1 + s T s  times as large as the original focal 
length. 
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Results for  various values of the relative extensional and flexural stiffness param- -- 
e ters  
For small values of E and 5 the ring stiffnesses a r e  small  relative to those of the 
shell, and the shell is relatively unaffected by the presence of the ring. As the values of 
C and 5 a r e  increased, the region near the edge of the shell is beginning to be affected 
by the presence of the ring. When the values of and approach infinite values, 
the edge of the shell becomes "clamped." In this condition rotation of the tangent to the 
shell at the edge is not allowed, and the radial displacement is constrained to be the same 
as that of the ring caused by the temperature change of the ring. 

and 5 for  a constant ratio of '3 to E (D/C = 10 000) a r e  shown in figure 4. 

- 

- 
Results for  a large value of the relative flexural stiffness parameter, D = 10 000, 

coupled with various values of E, and results for  a moderately large value of the rela- 
tive extensional parameter, 
figures 5 and 6, respectively. Effects of variations in the shape parameter X and var- 
iations in the radius-thickness ratio ro/h a r e  shown in figures 7 and 8, respectively, 
for  infinitely large values of both and D. A s  the shell becomes flatter (X 
decreasing or r im angle decreasing), the rotations become larger  in magnitude every- 
where in the edge region and the edge effects a r e  propagated farther into the shell 
(fig. 7). Thus from the point of view of keeping shell rotations small, larger  r im  angles 
a r e  desirable. Finally, the influence of small axial eccentricities of the ring are illus- 
trated in figure 9. Effects of small  radial eccentricities of the ring a r e  not shown 
because they a r e  negligible. 

- 
C = 0.1, coupled with various values of are shown in 

Effect of Temperature Gradient Through Thickness of Shell 

The rotation of the tangent to  the shell p as a function of radial distance r/ro is 
shown in figures 10 to 12  for  temperature distribution or, AT. The effects of various 
values of the relative stiffness parameters C and D for  a constant ratio of 
D/C = 10 000 a r e  shown in figure 10 for a shell for which X = 1/3 and ro/h = 5000. 
A s  the values of both C and D approach infinitely large values, p approaches zero 
throughout the shell. The f r ee  edge case where C = = 0, on the other hand, leads to 
the largest rotations. Effects of variation in the shape parameter X are shown in fig- 
ure  11 for  ro/h = 5000 for  the free edge case. A s  in the case of temperature distribu- 
tion C+Tr - as AT, larger  values of X lead t o  reduced magnitudes of rotation. The 
results of linear flat-plate theory used for  preliminary studies such as reference 1 fo r  
which 

- 
- -  

- 
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a r e  not given in this figure since values obtained from this formula a r e  found to be much 
larger  and affect the entire shell. Finally, effects of variations in ro/h a r e  shown in 
figure 12 for  h = 1/3 for  the f ree  edge case. 

Influence of Thermal Effects on Concentrator Performance 

The loss  in efficiency due to thermal distortions based on the assumptions and 
analysis contained in the appendix is shown in figures 13 and 14. 
these results are based on the assumption that solar energy is coming from a point 
source. Furthermore, interaction of thermal distortions with other features which 
reduce efficiency has not been incorporated. The effect on efficiency of temperature 
distribution a r T r  - asTs is shown in figure 13 when AT is zero, and the effect of 
temperature distribution % AT when QrTr - aSTS is zero is shown in figure 14. 

It is emphasized that 

The effect of temperature distribution a r T r  - asTs on efficiency is shown in fig- 
ure  13 for  a shell having values of h = 1/3, ro/h = 5000, and v = 0.3. The shell has an 
attached ring with properties such that = 1 and 5 = 106 which simulates one of the 
most detrimental conditions. The efficiency is shown as a function of the a rea  concen- 
tration ratio, herein used as the ratio of the projected a rea  of the paraboloid to the a rea  
of the aperture of an absorber in the focal plane, for  values of equal to 

100, 50, 20, and 10 pin./in. (pm/m). When = as = 10 pin./in-OF ( 18 - L:K), which 

is roughly the value of this coefficient for  metals, these curves correspond to loo F 
(5.6O K), 5' F (2.8O K), 2O F (1.l0 K), and lo F (0.56O K). 

J a r T r  - orsTsl 

The effect of temperature distribution as AT on efficiency is shown in figure 14 
for  a shell having values of ro/h = 5000, v = 0.3, and h = 1/3. The shell does not have 
an attached ring and this case leads to the greatest losses in efficiency due to a tempera- 
ture  gradient through the thickness of the shell. Curves are presented for  four values of 
as AT. Since the a rea  in which thermal distortions occur is small, it is not surprising 
that the loss  in efficiency is not great. 

CONCLUDING REMARKS 

Linear equations a r e  presented to describe the action of a paraboloid under axisym- 
metric temperature loading consisting of a constant temperature change of the shell, con- 
stant temperature gradient through the thickness of the shell, and a constant temperature 
change of an attached ring. Slope distortions a r e  found to be confined to a region near the 
edge of the shell and it is found that larger r im angles a r e  desirable since they restrict  
the distortions to  smaller magnitudes and to a smaller region. 
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For the case of a paraboloidal shell with a free edge subjected to a constant tem- 
perature gradient through i t s  thickness, the resul ts  for  preliminary purposes based on 
flat-plate formulas indicate the entire surface is affected and the rotations involved are 
much greater than those determined by the present analysis. 
ring relieves the distortions due to  a temperature gradient through the thickness of the 
shell. The attached ring however becomes the source of loading on the shell when the 
shell is at one temperature and the ring at another temperature. The larger the ratio 
of the extensional stiffness of the ring compared with that of the shell, the greater the 
distortions. 

It is found that an attached 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 19, 1966. 
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APPENDIX 

EFFICIENCY CONSIDERATIONS 

The objective of this appendix is to estimate the loss  in concentrating efficiency due 
to thermal distortions. The concentrating efficiency used herein is defined to be the 
ratio of the specularly reflected energy directed within a prescribed a rea  in the focal 
plane divided by the total specularly reflected energy (shadowing effects of the absorber 
being neglected). A point source of energy is treated. From this simplified analysis an 
idea might be gained as to the influence of temperature differences on the performance of 
a solar concentrator. The interactions of thermal distortions with other features which 
also reduce the efficiency of the collecting system such as, the sun's finite image, 
irregularities in the concentrator surface, and so forth, have not been included. 

Consider the reflecting surface being distorted at  a point such that a ray which 
originally was directed to  the focus is now displaced a distance 2 
The point under consideration is shown in figure 15 after the reflecting surface has 
undergone a positive rotation. Attention here is restricted to a point within the region 
near the edge of the shell for  which consideration of the effect of the rotation alone is 
sufficient since it can be shown that the effects of vertical and radial displacements a r e  
of higher order. 

in the focal plane. 

When transverse shearing deformations a r e  neglected as was  done in the shell 
development, the rotation of the tangent to the reflecting surface is the same as the rota- 
tion of the tangent to the middle surface p which can be determined from equation (71). 
From the geometry of figure 15, 

2 = r - (f - z)tan(2cp - 2p) (AI) 

Nondimensionalization of equation (Al) by dividing by ro yields 

where geometrical considerations have been employed and in the expansion of 
tan(2cp - 2p) in powers of p, p2 and higher te rms  have been neglected. Equation (A2) 
may be rewritten as 
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where sin 4cp has been expressed as a function of C;, after cp has been determined 
through the use of equations (35), (36), and equation (13b) to be 

If an absorber has  a flat circular aperture of radius la in the focal plane, 

where CA is the area concentration ratio herein defined as the ratio of the projected 
area of the paraboloid to  the area of the aperture of the absorber. At a particular point, 
r/ro, if the absolute value of 1 /ro determined from equation (A3) is greater than 
1 / G ,  the reflected energy from that point is considered lost and if the absolute value 
of 1 /ro is less than l/p~, the reflected energy from that point is considered to  be 
collected. 
concentrator from which energy is collected can be found graphically and the ratio of 
this area to the total concentrator projected area is the efficiency. The results shown 
in figures 13 and 14 are obtained by selecting several  values of the concentration ratio 
and calculating the corresponding efficiency. 

For a particular value of the concentration ratio, the projected area of the 
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(a) Side view of shell element in  undeformed and deformed positions. 

Figure 1.- Stress resultants, couples, and displacements. 

(b) Shell element. 
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Figure 2.- Relationship of rim angle to parameter indicating amount of concavity of paraboloid. h = (ro/iY)* 
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(a) Geometry of shell-ring structure. (b) Internal reactions at attachment point of ring to shell. 

Figure 3.- Geometry and internal reactions on an axial section of shell-ring structure. 
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Figure 4.- Effect of relative extensional and bending stiffness of a r i n g  o n  rotation of tangent to shel l  near edge due to a temperature difference between r i n g  and shell. 
AT = 0; constant Tr; constant Ts; v = 0.3; A = 1/3; r o / h  = 5000; e, = 0; eh = 0. 
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Figure 5.- Effect of relative extensional stiffness of a r i n g  of constant bending stiffness on rotation of tangent to_shell near edge due to a temperature difference betweer. 
r i n g  and shell. AT = 0; constant Tr; constant TS; u = 0.3; h = 1/3; ro/h = 5000; D = 1OooO; ev = 0; eh = 0. 
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Figure 6.- Effect of relative bending stiffness of a ring of constant extensional stiffness on rotation of tangent to shell near edge due to a temperature difference between ring 
and shell. AT = 0; constant Tr; constant Ts; u = 0.3; A = V3; ro/h = 5000; C = 0.1; 4( = 0; eh = 0. 
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Figure 7.- Effect of shape parameter on  rotation of tangent to shel l  near edge due to a teFperatuE difference between r i n g  and shell. AT = 0; constant Tr; constant Ts; 
u = 0.3; ro/h = 5000; C = a; D = a. 
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Figure 8.- Effect of ro/h on rotation of tangent to shell near edge due to a tempeIature dif_ference between ring and shell. AT = 0; constant Tr; constant Ts; v = 0.3; 
h = 1/3; C = m; D = m. 
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Figure 9.- Effect of axial eccentricity of ring on rotation of tangent to shell near edge due a tempe_rature difference between ring and shell. AT = 0; constant Tr; 
constant Ts; v = 0.3; h = 1/3; ro/h = 5000; C = 0.1; D = 10 000; eh = 0. 
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Figure 10.- Effect of relative extensional and bending stiffnesses of a r i n g  on rotation of tangent to shell near edge due to a temperature gradient through thickness of shell. 
Constant AT; arTr  - aSTS = 0; u = 0.3; h = 113; ro/h = 5000; ev = 0; eh = 0. 
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Figure 11.- Effect of shape parameter on rotation of tangent to shell near edge due to a tcmperatuie gradient through thickness of shell. Constant AT: arTr - asTS = U; 
v = 0.3; ro/h = 5000; C = 0; D = 0. 
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Figure 12.- Effect of ro/h on rotation of tangent to shell near edge due to a temperature gradient through thickness of shell. Constant AT; arTr - asTs = 0; u = 0.3; 
A = 11’3; c = 0; 0 = 0. 
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Figure 13.- Effect of thermal distortions near edge of a paraboloid due to a temperature difference between ring and shell on concentrating efficiency a_s a function of 
concentration ratio. Source of energy is treated as a point source. AT = 0; constant Tr: constant Ts; v = 0.3: A = 1/3; ro/h = Moo; C = 1; D = 106; 
e, = 0; eh = 0. 
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Figure 14.- Effect of thermal distortions near edge of a paraboloid due to a temperature gradient through thickness of shell on the concentrating elficiency-as a function 
of concentration ratio. Source of energy is treated as a point source. Constant AT; arTr - asTs = 0; u = 0.3; A = 113; ro/h = 5000; C = 0; D = 0. 
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Figure 15.- Effect of rotation of tangent to shell on path of a reflected ray. 
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